Mittwoch, 12. Februar 2014

WLANKaffee Code Repository

Wir haben vom Hersteller der Maschine die Auflage bekommen, die Informationen nicht öffentlich zur Verfügung zu stellen. Daher wird das Projekt und der Quellcode nicht mehr zur Verfügung stehen.

Ich habe den Code für den Arduino auf einer Google Code Projektseite hochgeladen. Der Code ist teilweise ungetestet, da die Kaffeemaschine noch nicht vollständig verdrahtet ist. Diese Arbeit wir nächste Woche beendet. Der Zeitpunkt für den ersten Release ist dann auch der nächste Dienstag.
Aktuell sind für den ersten Release diese Funktionen geplant:
  • Yún
    • Arduino
      • Firmware die über die Console Klasse gesteuert werden kann.
      • Steuerung der Menüknöpfe am HID
      • Drehencoder wird ausgewertet
      • Drehencoder Impulse werden simuliert
    • Linino
      • Python mit Django
      • Webseite mit Benutzerverwaltung
      • Steuerung über Console Klasse des µController
  • Dokumentation
    • Python
      • SPI Protokoll für Display Frames


Sonntag, 2. Februar 2014

Arduino Yún, Linux mit Arduino auf einem Board

Für unsere Projektarbeit haben wir entschieden, dass ein Linux fähiges Board und ein Arduino Mikrocontroller zum Einsatz kommen soll. Um das ganze möglichst klein zu halten haben wir den Arduino Yún ausgewählt. Der Yún hat neben den Funktionen, die auch ein Leonardo mitbringt zusätzlich einen voll funktionsfähigen Computer an Board, der mit einem speziellen openWRT Distribution läuft. Das Besondere ist, dass die beiden Geräte miteinander kommunizieren können und somit beide Geräte direkt miteinander verbunden sind. Auf der Linuxseite bietet die Linino Distribution einiges an Funktionalität, wie zum Beispiel eine REST-Full API um die Pins des Arduinos direkt anzusteuern. Eine weitere großartige Funktion wird in der Bridge Bibliothek zur Verfügung gestellt. Die Kommunikation zwischen Mikrocontroller und Programmen auf der Linuxseite.

SSH Konsole des Yún mit Erweiterung für die Kaffeemaschine

In unserem Falle wird der Mikrocontroller die Ansteuerung der Kaffeemaschine übernehmen und bestenfalls den SPI Bus abhören und die übertragenen Displaydaten in einen seriellen Bytestream umwandeln. Die Linuxseite wird die komplette Benutzerschnittstelle bereitstellen, also ein Webinterface mit dem die Kaffeemaschine gesteuert werden kann. Außerdem wird die Webseite den Inhalt des Displays darstellen. Wie die Daten von der Maschine in ein Bild gewandelt werden, habe ich letzte Woche schon beschrieben.

Diese Woche habe ich mich mit dem SPI Interface beschäftigt. Die Displaydaten werden über den SPI Bus vom Benutzerpanel an den Displaycontroller gesendet. Diese Daten können vom Arduino aufgezeichnet werden. Um klein anzufangen, habe ich verschiedene Ansätze ausprobiert. Die Grundvoraussetzung war, dass der Bustakt von 1 MHz eingehalten wird. Dann werden alle 0,1 Sekunden 541 Bytes übertragen. Der genaue Aufbau des Protokolls lässt sich relativ kurz beschreiben. Zuerst bekommt das Display den Wert 0x89 übertragen. In den Datenblättern, die etwas mit dem Display zu tun haben könnten habe ich diesen Befehl leider nicht finden können. Weiter geht es mit dem Byte 0xB4 was laut Datenblatt die Speicherseite 4 als Startadresse angibt. Darauf folgen 134 Bytes mit Bilddaten, bis dann 0xB5 (page 5) übertragen und die nächste Speicherseite ausgewählt wird. Nach weitern 134 Bytes folgt 0xB6 (page 6) und nach weiteren 134 Bytes folgt 0xB7 (page 7). Die abschließende Speicherseite und somit die letzte 'Zeile' des Displays hört auch hier nach genau 134 Bytes auf. Da das Display auf dem Benutzerpanel auf dem Kopf stehend eingebaut ist, sind auch die Daten 'gekippt' Eine einfache Spiegelung hilft das Bild wieder sichtbar zu machen.

Der Arduino Yún
Um mit dem SPI Bus zu arbeiten, ohne die Maschine dabei zu haben, habe ich die Daten eines Frames in ein Arduino-Sketch geladen. Dieser Arduino macht nichts als ein und dasselbe Bild immer und immer wieder alle 0,1 Sekunde über den SPI Bus zu übertragen. Die nächste Aufgabe ist jetzt, die Daten mit dem Yún zu empfangen und zu verarbeiten. Da ich bis jetzt nur einen funktionierende SPI Kommunikation mit Yún als Master und einem Nano als Client zum Laufen gebracht habe, kann ich noch nicht davon berichten, in wieweit sich die Idee mit der Bildgenerierung verwirklichen lässt.

Sonntag, 19. Januar 2014

Das SPI Protokoll für das Kaffeemaschinen Display

Dieses Wochenende haben wir im Projektteam die Kommunikation vom Controller auf dem Benutzerboard zum Display genauer unter die Lupe genommen. Da wir keine genauen Informationen über die verwendeten Bauelemente hatten sind wir mit google auf die Suche nach Datenblättern von Displays ähnlicher Bauart gegangen. Die meisten Displays mit SPI Interface verstehen das gleiche Protokoll zum Setzen der Kofigurationswerte und Übertragene der Daten. Die Daten haben wir mit Hilfe des Logic Analyser ja schon das letzte mal aus der Maschine extrahiert. Nach einigen Anläufen haben wir im Datenbaltt eines Displaycontrollers (ST7565R) die Konfiguration des Display RAMs gefunden. Mit dem Wissen wie das Bild, das im Display angezeigt wird zu übertragen ist, gelang es uns den Datenstream so zu formatieren, dass wir das Bild des Displays gespiegelt auf dem Bildschirm sehen konnten. Mit ein wenig Bearbeitung der
Daten ist es gelungen das Bild, das am Display angezeigt wird zu rekonstruieren.
Der Inhalt des Datenstreams in serieller Formatierung

Datenübertragung in der Maschine

Die Maschine kommuniziert einmal mit der Steuerplatine und dann mit dem Display. Dabei ist die Verbindungsleitung zwischen den Platinen mit einem Enable
Signal verehen. Wenn dieses Signal High ist, ignoriert die Steuerplatine die Daten; wenn der Pin auf Low gelegt wird, sind die Daten am Bus für die Steuerplatine.
Vom Controller gehen, neben der Datenleitung MOSI, nicht nach Außen geführte Leitungen an das Display. Es ist also anzunehmen, dass dort auch eine Enable und/oder
Clock Leitung dabei ist. Die Daten, die über den SPI Bus bei dauerhaftem High Zustand auf Enable an der Controllerplatine gehen sind somit aller Wahrscheinlichkeit
nach an das Display gerichtet. Genauer betrachtet wurden jedes Paket 541 Bytes übertragen. Das Display hat eine Bildmatrix von 128 * 32 Pixeln, somit werden
4096 Bit zum Darstellen eines monochromen Bildes benötigt. Die übertragenen Bytes beinhalten diese Datenmenge und zusätzlich noch einige Steuerbefehle.
Das Bild steht noch auf dem Kopf und die Page-Select Befehle sind noch links sichtbar

Display RAM

Wichtig ist dabei zu beachten, dass die Pixelreihen des Display nicht wie erwartet seriell mit Daten bestückt werden, sondern der serielle Kommunikationsport nur vor den parallelen geschaltet wurde. Dadurch ergibt sich die Eigenschaft, dass die Daten 'Zeilenweise' in den Speicher des Displays geladen werden. Zeilenweise
bedeutet dabei, dass der Speicher in 8 bit breite Pages eingeteilt wird. Jede Page wird zuerst ausgewählt und dann von Spalte 0 an aufgefüllt. Dadurch erscheinen die Bilddaten nicht waagerecht, sondern senktrecht und werden so zusammen gesetzt. Nachdem der Aufbau des Speichers bekannt war, konnten wir unsere Software danach ausrichten und haben den Displayinhalt 'CAPPUCCINO' in den sortierten Matrxwerten erkennen können. Jede Zeile oder Page begann mit einem Page-Select Befehl, der getroßt ignoriert werden konnte. Der letzte Schritt war es, die Matrix der Bilddaten in ein PNG zu gießen um es später als Bild in einer Webseite verwenden zu können.
Die rekonstruierte Grafik des Maschinendisplays

Analyse des Protokolls zur Maschinensteuerung

Nachdem jetzt die Übertragung der Displaydaten bekannt ist, müssen noch die vorherigen 10 Bytes der Maschinensteuerung in einen Kontext gebracht werden. Mit Hilfe eines kleinen Scripts habe ich die Logic Analyser Mitschnitte in Kommando- und Bildabschnitte zerlegt. Das Bild wird generiert und die Kommandodaten werden daneben in einer Tabelle abgebildet. Jetzt müssen wir nur die passenden Befehle herausfinden. Dazu gibt es dann nächste Woche mehr.