Posts mit dem Label 3D Drucker werden angezeigt. Alle Posts anzeigen
Posts mit dem Label 3D Drucker werden angezeigt. Alle Posts anzeigen

Sonntag, 9. Juli 2017

Neues Familienmitglied: Wanhao D7 Desktop 3D Printer Teil 1

Ich habe mir (mal wieder) einen neuen 3D Drucker gekauft. Diesmal ist es kein FDM Drucker, wie die letzten, sondern ein SLA Drucker. Dieser druckt mit Licht in ein Harz. Es funktioniert also ganz anders als der Druck mit der Plastikschnur durch die CNC-Heisklebepistole.

Der Wanhao D7 (Amazon) ist der im Moment günstigste SLA Drucker und kostet zur Zeit ca. 550€ für die Version 1.3. Die neuste Asuführung, Version 1.4 ist für ca. 600€ bei Amazon zu bekommen. Direkt an die Haustür. 3 Tage Versand, Kein Zoll, kein Porto, keine Gebühren.


Im Set der Version 1.3 befindet sich folgendes: Oben links ist der lichtdichte Deckel, rechts daneben der eigentliche Drucker. Es sind 200ml Harz im Lieferumfang enthalten, ebenso wie ein lichtdichter Becher zum abwaschen des gedruckten Teils von überflüssigem Harz. Ein Schraubenzieher und Spatel gehören ebenso wie USB- und HDMI-Kabel zum Lieferumfang. Das externe Netzteil besitzt 60W und wird mit einem Stecker für britische Steckdosen geliefert. Hier passt aber jeder Kaltegeräte Netzstecker (Amazon). Zum Drucker gehört dann noch das Harzbecken und der Druckstempel. Zum Harzbecken gibt es noch eine Ersatzfolie. Der Stempel ist das Druckbett und misst 118x75mm.
Daneben sind noch zwei Latex Einweghandschuhe im Set, da das Harz alles andere als harmlos ist.

Aufbau

Der Aufbau gestaltet sich im Gegensatz zu anderen 3D Druckern, vor allem den Bausätzen, als sehr einfach. Der Drucker wird mit USB und HDMI an den Computer angeschlossen und das Program "Creation Workshop" gestartet. Das könnt ihr auf der Webseite von Wanhao bekommen. Der Drucker ist in der Software schon vorkonfiguriert und es müssen nur noch Kleinigkeiten angepasst werden. Weitere Dokumente findet man hier und hier. Jetzt noch Strom dran, Harz rein und ab geht die Post. 

Oder auch nicht. Denn zuerst habe ich die Funktion "trocken" testen wollen. Also ohne das Harz und siehe da. Das funktioniert nicht. Grund dafür war, dass der Endschalter nicht angeschlossen war. Da ist wohl das Kabel beim Transport abgefallen.
Also erst mal das Gehäuse aufschrauben. Der Deckel des Gehäuses ist mit 4 kleinen Schäubchen befestigt, für die ich keinen passenden Innenschskant-Schlüssel hatte, der 2mm war etwas zu klein und ist durchgerutscht. Aber ein T8 Torx tuts auch. Mit dem Deckel ab hab ich das lose Kabel auch schnell wieder auf den Endschalter stecken können. Strom dran und siehe da, die kleine LED auf dem Enschalter leuchtet rot. Das hat sie vorher nicht getan.
Das Streulicht der UV-LED ist ziemlich groß, deshalb ist es wichtig, dass das Gehäuse ebenso lichtdicht ist. Alles wieder zusammen bauen und erst mal einen Trockenlauf testen


Doch bevor es ans Drucken geht benötigt man noch einige Betriebsmittel. Um das gedruckte Objekt später von Resten des Harzes befreien zu können muss es mit Alkohol abgewaschen werden. Dazu braucht man Reinigungsalkohol (Amazon) in größeren Mengen. Auch sind immer Handschuhe zu tragen, daher gleich mal ein paar mehr und am Besten welche die nicht aus Latex sind. Latex ist nicht sonderlich resistent gegen Alkohol und das Harz. Daher lieber welche aus Nitril (Amazon), die sind etwas beständiger.

Das Harz wird in die Schale gegeben und der Druckstempel darin versenkt. Dann kann es auch schon los gehen. Der Arbeitsplatz muss unbedingt gut gelüftet sein, während dem Drucken entstehen Dämpfe, die alles andere als angenehm sind. Außerdem sind die Dämpfe nicht gesund.


Der Arbeitsplatz für den ersten Druck ist vorbereitet und der Drucker läuft. Nach 3 Stunden das Ergebnis. Von der Druckplatte gelöst und in Alkohol gereinigt. Dann 10 Minuten im Alkohol in die Sonne gestellt, dadurch härtet das Harz noch weiter aus und schlussendlich An der Luft getrocknet. Das Becken, den Stempel und alles andere, das mit dem Harz in Berührung gekommen ist, habe ich mit Alkohol und Zewa gründlich abgewischt. Die Harzreste können in die lichtundurchlässige Flasche zurückgegossen werden.


Die Detailtiefe ist überragend. Der Prozess ist ziemlich Zeitaufwändig, kostet viel Geld und Unmengen an Zewa, aber es lohnt sich. Demnächst dann mit einer anderen Software (nanoDLP) und einem größeren Objekt und besserer Luftabsaugung. Der Gestank ist sehr unangenehm.

Montag, 14. November 2016

Sparkcube V1.1 XL Build Aufbaulog Teil1

Die Teile für meinen neuen Drucker sind endlich gekommen. Nach etwa einem Monat Lieferzeit sind jetzt alle Teile aus den verschiedenen Quellen eingetroffen. Der Aufbau der Sparkcube XL ist von Sparklab in einigen Videos dokumentiert:


Nach dem ich mich an den Videos orientiert habe stand das grobe Gerüst nach etwa einem Tag.

Die Elektronik und den Extruder werde ich selbst anbringen. Daher habe ich noch ein paar weitere 3D gedruckte Teile gebraucht. Das vorerst fertige Ergebnis sieht schon mal aus wie ein 3D-Drucker. So weit so gut.

Jetzt zu den Dingen, die noch fehlen, verbesserungswürdig sind oder einfach schlichtweg nicht funktionieren.

Z-Achse & Druckbett

Das Druckbett ist auf einem T-förmigen Träger angebracht. Die drei Ecken des Trägers haben jeweils eine eigene Gewindespindel. Rechts und links sind die Gewindespindeln noch durch Linearführungen unterstützt. Somit ist es möglich die Ebene beliebig (in gewissen Grenzen) im Raum zu platzieren. Idealerweise natürlich parallel zu der XY-Ebene der Extruderspitze. Das ist in diesem Video schön gezeigt. Nachteil ist, dass man für jeden der Motoren der Z-Achse einen eigenen Treiber am Mainboard benötigt. Im Moment ist ein Schrittmotor Treiber für die drei Motoren zuständig. Das läuft ok, aber nicht 100%ig zufriedenstellend. Ein Ausrichten des Druckbetts geschieht mit den 3 Schrauben, die für ein manuelles Anpassen vorgesehen sind.

Extruder

Ich möchte, dass der Drucker mit zwei Extrudern bestückt ist, die idealerweise zwei unterschiedliche Kunststoffe ausdrucken können. So können einerseits Stützstrukturen besser entfernt werden, andererseits können Verbundwerkstoffe erzeugt werden. Beispielsweise ABS Gehäuse mit Gummierter Außenseite. Im Moment ist an dem Drucker lediglich ein einzelner Extruder angebracht. Um einen zweiten anzubringen muss ich zuerst den XY-Schlitten neu designen. Die Energiekette bringt bereits genügend Leitungen und Stecker mit um ein weiteres Hotend zu betreiben.


Firmware

Als Firmware wird Marlin verwendet. Marlin hat eine Vielzahl von Konfigurationsmöglichkeiten und schier unendliche Komplexität. Ich habe bis jetzt nur die Oberfläche angekratzt und habe es noch nicht geschafft, dass alle Funktionen so funktionieren wie erhofft. Unter den fehlenden Funktionen sind: 3 Motoren für Z, WiFi über das Modul auf der Hardware, Lüftersteuerung für das Hotend.

Ich habe das von ST erzeugte Projekt kopiert und werden alle meine Änderungen auf GitHub veröffentlichen. Vor allem möchte ich das Einstellen der Z-Achsen wie im Video oben gezeigt gerne auch in der Software haben.

Hardware

Wenn die oben beschriebenen Funktionen umgesetzt werden sollen, bringt das die Hardware von ST an Grenzen. Wie genau die Funktionen erweitert werden können bin ich mir noch unsicher. Für den Drucker mit zwei Extrudern ergeben sich folgende Anforderungen:
  • 2 Motoren für XY
  • 3 Motoren für Z 
  • 2 Motoren für Extruder
  • 2 FETs für Hotends
  • 1 FET für das Heizbett
  • 3 Thermistor Eingänge
  • 3 Endschalter Eingänge
  • optional 2 Eingänge für Filamentsensoren
  • optional 2 weitere Endstops für Z
  • optional 5 weitere Endstops für jeden Achstenmotor als maximum Stop.
Features der Hardware sind:
  • 6 Motortreiber
  • 3 Extruder
  • 3 Extruder FETs
  • 3 Hotend FETs
  • 3 Extruder Thermistoren
  • 3 Hotend Thermistoren
  • 6 Endstops
  • 1 Erweiterungsstecker
    • 6 Endstops
    • 3 NTCs
    • SD Card Interface
    • SPI Interface
    • USB Interface
    • UART Interface
    • I2C Interface
    • 4 GPIOs
    • 5V and 3V3 Power
Die Interfaces des Erweitungssteckers liefern genügend Signale um die benötigten Features nachzurüsten. Es sollte als möglich sein mit dem STEVAL-3DP001V1 einen voll funktionsfähigen 3D Drucker mit allen benötigten Funktionen zu erstellen. Und das Beste daran: das Board kostet nur 
116$

Montag, 3. Oktober 2016

Neuer Drucker auf STM Cortex M4 Basis

Das sind bis jetzt die Teile, die sich bei mir eingefunden haben um den Sparkcube 1.1XL du bauen. Es wird wahrscheinlich nicht eine komplette Nachbildung des originalen Sparkcube 1.1XL, sondern ich werde die Elektronik auf diesem Board basiert aufbauen: STEVAL-3DP001V1 Das Beispieldesign von ST für einen 3-D Drucker auf Basis der STM32 Cortex M4 Prozessors. Mal sehen, wie diese Hardwar im Vergleich zur Duet Hardware funktioniert.


Es fehlt noch ein bisschen was, aber ich sollte demnächst mit der Mechanik beginnen können.

Sonntag, 6. März 2016

Ormerod Erweitungungsboard für Diamond Hotend

Im Sommer habe ich meinen Ormerod für das Diamond-Hotend umgerüstet. Dazu habe ich an den Extension-Stecker drei Pololu-kompatible Schrittmotortreiber angelötet. Damit ihr das nachzubauen könnt, gibt es jetzt das Adapterboard mit Aufnahmestellen für vier Pololu Module.

3D Rendering der Baugruppe in KiCad
Das Board wird einfach nur an den Erweiterungssteckplatz gesteckt. Die Konfigurationsdatei auf der SD-Karte kann angepasst werden um die neuen Schrittmotoren zu unterstützen.
Fertig bestücktes Duex X Board mit vier Pololu Stepper Treibern
Die Änderungen in der Konfigurationsdatei müssen auf der SD-Karte des Duet Boards durchgeführt werden. Jede Farbe, die mit dem Diamond Hotend gedruckt werden soll erhält eine eigenes Werkzeug. Dazu müsst ihr die Befehle G10 und M563 verwenden.
Mit M563 wird das "Werkzeug" angelegt. Werkzeug deshalb in Anführungszeichen, weil ein Werkzeug eine bestimmt Farbe im Hotend ist. M563 legt die Parameter fest, mit denen die Farbe erzeugt wird.

M563 P0 D0 H1

Diese Zeile erzeugt das erste Werkzeug T0 und teilt mit, welche Motoren und welche Heizer zum Werkzeug T0 gehören. D0 ist der Extrudermotor 0 und H1 ist der Heizer Nummer 1. Heizer Nummer 0 ist das Druckbett. Motor 0 ist der erste Extruder auf dem Duet Board. Um Motoren des Extension Board zu verwenden müsst ihr die Nummer an der jeweiligen Pinleiste nehmen. Das gilt jedoch nur für ein Duet Board der Version 0.6! Mit der neuen 0.8.5 Version wurde auch ein weiterer Motortrieber auf das Basisboard gebracht. Somit muss die Nummer um eins erhöht werden.

Als nächstes müssen wir einstellen, mit welcher Arbeitstemperatur (220°C) und welcher Standby-Temperatur (120°C) das Werkzeug arbeitet:

G10 P0 S220 R120

Auch hier muss die Werkzeugnummer 0 angegeben werden.

Duex Board mit zwei zusätzlichen Schrittmotoren angeschlossen

Mit den beiden Zeilen die wir oben sehen können wir jetzt eine ganze Liste an neuen Werkzeugen definieren. Der Drucker ist jetzt in der Lage 5 (oder 6) Motoren zu steuern. Für das Diamond Hotend benötigen wir nur 3. Wenn alle drei Motoren an das Extension Board E1, E2 und E3 angeschlossen sind, steht in der config.g also:

G10 P0 S220 R120
G10 P1 S220 R120
G10 P2 S220 R120
M563 P0 D1 H1
M563 P1 D2 H1
M563 P2 D3 H1

Damit können wir schon drei Farbige Drucke erzeugen. Das Schöne kommt allerdings, wenn wir die Eigenschaften eines Werkzeugs so definieren, dass mehr als nur ein Motor verwendet wird. 
Zu diesem Zweck gibt es in der Firmware für das Duet Board den Befehl M567. Dieser legt ein Mischverhältnis für ein bestimmtes Werkzeug fest.

M567 P0 E0:0.1:0.2:0.7

Dieser Befehl legt fest, dass das Werkzeug T0 ab sofort die zu extrudierende Länge gleichzeitig auf folgenden Motoren ausgibt:

  • Motor 0 : 0%
  • Motor 1: 10%
  • Motor 2: 20%
  • Motor 3: 70%
Wie wir oben sehen sind an Motoren 1 bis 3 die Motoren für das Diamond Hotend angeschlossen. Somit erhalten wir eine heterogen gemischte Masse am Ausgang der Düse. Mit transparenten Filamenten sollte das allerdings brauchbare Ergebnisse liefern. Ob das funktioniert wird sich in der Zukunft zeigen. Im Moment warte ich noch auf Teile um drei funktionierende Extruder zusammen zu bauen.

In der Zwischenzeit kann man die Extensionboards auch nachbauen, oder käuflich erwerben. Die Daten sowie eine Anleitung werden in den nächsten Tagen online gestellt.


Sonntag, 17. Januar 2016

Assembly of a Chinese 3D Delta Printer Kit

I got myself a Chinese 3D printer kit. It is a delta configuration build after the Reprap Kossel Mini . The Set included:
  • Hardware (linear rails, belts, motors, screws feathers, print surface)
  • Electronics (RAMPS 1.4, LC-display, SD-card, switches, cables)
  • Extruder (direct bowden extruder)
  • Hotend (E3D clone with heater cartridge and thermistor)
  • Heated Bed PCB (for heating up the print surface)
  • Free PLA filament
Contents of the two packages
Everything was shiped with DHL Express from Hong Kong and arrived 7 days after purchasing. Which is very nice for a package from china. Shipping was only 32$ extra. In Germay customs claimed another 68€ so in total 370€ which is not too bad for the two packages containing (hopefully) all of the parts needed for assembly.

Unpacking all the boxes leaves us with heaps of material. The threr cardboard boxes contain all of the parts. The tube contains the linear slides for the towers. The black beams are for the frame and the red PCB is the heater for the print surface. Included in the package were all the Allen keys needed for assembly. A lot of M3, M4 and M5 screws, nuts and various bits. An SD card with the necessary firmware and build instructions were included as well. All the mechanical connections are printed with PLA in a OK quality. The dimensions are met so I was no problem to put everything together.

All the assembly parts layed out on the table
With my comprehensive knowledge of simplified Chinese symbols, which is none, I could read some of the documentation. Luckily the internet is full of assembly instructions for the reprap Kossel mini.

After a few hours the mechanics where done and everything moves smoothly. After adjusting the delta values in the firmware, z height and probe offset for finding the true Z0 position it printed with the included PLA filament. The test cube was sliced with slic3r with a configuration I came up with. After a few layers the extruder stopped working and nothing was fed into the hotend anymore. After some fiddling around with the temperature and manually trying to push the filament through the hotend I dissembled the whole hotend part. It showed that the free filament sample had a huge part of 2mm diameter instead of 1.78, which i measured before configuring the slicer. Due to the large diamter the filament got stuck in the cold part of the hotend. Stupid thing but easyly fixable. Pushing with a small screwdriver from the nozzle side of the cold part released the stuck piece of filament.
Well the free sample found its way to the bin and a spool of light blue high quality PLA found its way to the extruder and out of it again. Tightening the hotend in a hot state will hopefully do the job.
The thing is running, litterally. A nice piece of hardware
If you are looking for a nice kit to build yourself a kossel mini 3D printer you can go for one of the cheap sets from china. But keep in mind, you are in for a steep learning curve. If you want to print 3D models and not fiddle around to much, buy something else.

Samstag, 24. Oktober 2015

Sooo teuer...

Conrad Elektronik ist nicht unbedingt für kleine Preise bekannt. Auch der 3D Drucker von Conrad, der RF1000, ist nicht von der günstigsten Sorte. Vor einigen Tagen ist im Hotend des Druckers der Heizwiderstand durchgebrannt. Conrad bietet zwar ein Ersatz für das Hotend an, allerdings nur im Set mit einigen Teilen des Extruders. Das Set beinhaltet neben dem Hotend auch noch die Mutter zum Befestigen, das Ritzel für den Extruder Motor und ein 'Spezialwerkzeug' zum Befestigen des Extruders am Führungsschlitten. Das ganze zum ansehnlichen Preis von 80€ zzgl. Versand. Was ein Schnäppchen. Der Extruder alleine ist mit 65€ gelistet, aber nicht mehr lieferbar. Nur noch das Set mit den unnötigen Teilen, die nicht kaputt gehen sollten für 15€ mehr ist verfügbar. Sehr schade...
RF1000 Ersatzteil-Set 5 - Extruder 3mm

Donnerstag, 20. August 2015

Mehr Farben mit dem Ormerod

Diamond Hotend, Alu X-Ausleger
und Alu Druckbetthalter
Der Ormerod stand seit meinem Umzug eigentlich nur unbrauchbar in der Ecke. Die Geometrie einiger Kunststoffteile hat die hohen Temperaturen in diesem Sommer nicht unbeschadet überstanden. Die letzten zwei Tage sind die Problemchen behoben worden und der Drucker ist wieder fit. Außerdem hat er ein kleines Upgrade spendiert bekommen. Dabei ist nicht nur die Firmware auf den aktuellen Stand gebracht worden, sondern auch die Hardware von Grund auf erneuert worden.
Bei 40° im Schatten sind PLA
Teile nicht sonderlich stabil

Die Tr 10x2 Gewindespindel ist schon seit einer Weile verbaut. Dazu habe ich die Spindel erhitzt und in das Standard Zahnrad der 5mm Achse geschmolzen. Dabei habe ich darauf geachtet, dass alles noch rotationssymetrisch geblieben ist. Die Trapezgewindemutter habe ich dann anstelle der originalen Halterung am Auslegerarm befestigt und die Mutter darin festgeklebt.

Ein Anbieter in England bietet für den Ormerod den X-Ausleger und den Druckbetthalter in Aluminium Ausführung. Beides zusammen ist für 100€ zu haben und eine wertvolle Erweiterung für den Drucker.



Zwei von drei Extrudern am Werk
Das Diamond Hotend ist eine geniale Entwicklung für den Druck mit mehreren Farben. Bei einem Druck mit mehreren Extruderdüsen ist es immer schwierig die nicht aktiven Düsen davon abzuhalten zu tropfen. Weiterhin sind die Düsen meistens auf der gleichen Höhe wie die gerade aktive und kratzen somit über die aktuell gedruckte Oberfläche. Das Diamond Hotend löst dieses Problem, indem die maximal drei Filamente über eine gemeinsame Düse gedruckt werden. Alle drei Fäden werden über separate Heatbreaks in eine zentrales Hotend geführt. Das klingt erst mal nicht ganz so einfach und auf den ersten Blick ist der Druckkopf sehr groß und schwer. Auf den zweiten Blick ist das weiterhin so, doch das Potenzial mit bis zu drei verschiedenen Farben drucken zu können ist die Mühe wert, die es kostet den Drucker umzubauen.

Mit dem G-Code Befehl M570 kann der Timeout für das Hotend hochgesetzt werden. Denn das ist jetzt wesentlich größer als vorher und somit braucht es länger um heiß zu werden.

M570 S300 ; Max. 300 Sekunden Aufheizzeit, sonst Heizerfehler

Leider sind hier nur drei verschiedene Farben aus dem gleichen Material möglich zu drucken und nur sehr schwer verschiedene Materialien, da alle Filamente mit der gleichen, oder ähnlichen Temperatur gedruckt werden müssen. Wie genau die Reinigung der gemeinsamen Düsenkammer funktioniert ist noch zu zeigen. Im Moment sieht es so aus als würden innerhalb weniger Zentimeter das alte Filament komplett mit der neuen Farbe ersetzt. Wie sich das mit deutlichen Farbunterschieden bemerkbar macht ist auch noch zu beurteilen.


Dank dc42's RepRapFirmware Fork ist das Anlegen von mehreren Werkzeugen mit unterschiedlichen Extrudern, aber gleichem Heizer sehr einfach. In der Konfigurationsdatei kann ein Werkzeug einfach hinzugefügt werden.

M563 P0 D0 H1     ; Werkzeug T0 mit Motor 0 nach X, Y, Z, mit Heizer 1
G10 P0 S200 R100  ; 200° Aktiv, 100° Standby
M563 P1 D1 H1     ; Werkzeug T1 mit Motor 1, mit Heizer 1
G10 P1 S200 R100  ; 200° Aktiv, 100° Standby
M563 P2 D2 H1     ; Werkzeug T2 mit Motor 2, mit Heizer 1
G10 P2 S200 R100  ; 200° Aktiv, 100° Standby
M563 P3 D0:1:2 H1 ; Werkzeug T3 mit Motor 0,1,2, mit Heizer 1
G10 P3 S200 R100  ; 200° Aktiv, 100° Standby
M92 E210:210:210  ; 210 Steps pro mm für beide Extruder Motoren 

Ebenso können verschiedene Extruder teilweise zur Mischung von Materialen angesteuert werden. Dafür kann in der Software ein Werkzeug mit mehreren Extruder Motoren angelegt werden. die Mischverhältnisse werden Prozentual angegeben. 

M567 P3 E0.2:0.6:0.2 ; Mische 20% E0, 60% E1 und 20% E2 für Tool 3

Wie das mit dem Diamond Hotend zusammenarbeitet, wird sich zeigen.

Montag, 27. April 2015

Finish eines 3D-Druck aus ABS Kunststoff

Marvin für 3D Hubs
Meistens erkennt man einen 3D-Druck am Linienmuster der einzelnen Schichten. Jede neue aufgetragene Schicht führt dazu, dass das Ergebnis dieses Linienmuster aufweise. Um ein optisch ansprechendes Ergebnis für den Druck zu erziehlen kann daher nach dem Druck ein Prozess in Gang gebracht werden, der mit Aceton das eben gedruckte ABS wieder anlöst. Da Aceton allerdings ABS sofort auflöst, darf es nicht direkt auf den Druck aufgebracht werden. Bei dieser Methode wird Aceton als Dampf um den Druck herum gebracht. Die Oberfläche löst sich an und 'verschmilzt' zu einer glatteren Struktur. Die Linienmuster komplett kann man damit nur sehr schwer entfernen, aber eine glänzende Oberfläche wird auf alle Fälle erziehlt. Um den Dampf zu erzeugen lege ich in Aceton getränktes Küchenpapier an den Rand einer Tasse. Die kommt dann auf das noch warme Druckbett. Das ganze lasse ich dann für 15 Minuten stehen. Danach ist die Außenseite des Modells noch ziemlich weich und sollte nicht mit dem Finger berührt werden. Nach einigen Minuten ist das Aceton verdunstet und die Ausßenseite des Drucks wieder fest. Und immer an genügend frische Luft denken!

Marvin ist frisch poliert
Aceton-Dampfbad
 

Samstag, 18. April 2015

Renkforce RF1000 von Conrad

Als ich im Februar auf der Embedded World bei Conrad meine Visitenkarte an einen Gewinnspielzettel getackert habe, habe ich tatsächlich den Renkforce RF1000 3D Drucker gewonnen. Noch auf dem Stand habe ich mich mit einem der anwesenden Verkäufer über den Drucker unterhalten und fand ihn für den Preis von ~2.000€ viel zu teuer. Die Möglichkeit den Drucker zur Fräse umzubauen allerdings hat was. So durfte ich gestern in der Conrad Filiale meinen Hauptgewinn abholen. Zwei sehr nette Mitarbeiter haben mir dann auch noch das Angebot der Mannheimer Conrad Filiale näher gezeigt. Nach der Führung ging es dann in die Abteilung mit den Druckern und 3D Druckern. Dort wurde ich von einem Verkäufer in die Verwendung des RF1000 und den Workflow von Stl Modell nach GCode eingewiesen. Gleichzeitig wurde ein 3D-Scan von mir angefertigt. Der hat allerdings nicht so gut funktioniert; ich bin wohl nicht 3D-fotogen. Neben einem riesigen Karton gab es noch eine 750g Rolle PLA Filament (3mm) dazu und ich war Besitzer eines 2.000€ teuern 3D Druckers. Abgefahren.


Zuhause angekommen begann dann das Aufbauen. Neben dem komplett zusammengebauten Drucker befindet sich noch eine Tüte mit Einzelteilen und dem Stromkabel in der Packung. Der Verkäufer hat mir gesagt, der Drucker sei einsatzbereit und kann sofort losdrucken, dass die Druckerdüse auf dem Druckbett schleift, wenn man um den Achsennullpunkt herum fährt, stellte diese Aussage als nicht ganz die Wahrheit hin. 

Also in der Anleitung geschaut und den Übeltäter gefunden. Die Kontermutter des Z-Achsen Nullpunkt ist nicht ganz festgezogen worden. Die Schaube schnell neu eingestellt, Kontermutter fest gezogen, Automatische Druckbettvermessung gestartet. Kalibrierungswürfel von der SD-Karte gestartet und schon ging sie los, die wilde Fahrt. Was während der Vermessung schon aufgefallen ist zeigt sich beim Drucken sehr deutlich. Der RF1000 ist laut. Nicht nur die Drehenden Motoren machen einen riesen Lärm, sondern auch die Halteströme der Motoren sind so getaktet, dass sie noch im höhbaren, aber hohen Frequenzspektrum liegen. Hier wird hoffentlich ein Firmwareupdate Abhilfe schaffen denn der Drucker ist so laut, dass es kein Spaß macht sich im gleichen Raum aufzuhalten. 

Die mitgelieferte Filamentführung ist bescheiden und das Filament bleibt teilweise im Schlauch hängen, bzw die Reibung am Schlauch ist so hoch, dass der Extruder es nicht schafft das Filament durch den Schlauch zu ziehen. Glücklicherweise gibt es auf der SD-Karte bereits eine alternative Halterung zum Drucken. Beim Druck musste ich dem Extruder dann Händchen halten um eine konstante Zuführung des Filaments zu erreichen. Dabei ist mir aufgefallen, dass der Extruder noch einiges an Optimierungspotential mitbringt. Das Filament ändert je nach Position des Druckkopfes den Eintrittswinkel in den Extruder. Dieser schabt dann im ungünstigsten Fall kleine Kunststofffäden ab. Diese sammeln sich dann im Extruder und werden von dem geriffelten Rad mitgenommen. Allerdings bleiben sie meistens in den Riffeln hängen und führen so langsam aber sicher zur Verstopfung. Hier werde ich in der nächsten Zeit einige Versuchsobjekte drucken, die das hoffentlich beheben.

Die blaue Bauraumbeleuchtung mit dem orangenen Filament ist allerdings schon ein Hingucker!


Sonntag, 12. April 2015

Reinigen einer 3D Drucker Düse

Ich habe heute ausprobiert, wie gut man die Düse eines FFM Druckers mit einer Lötlampe reinigen kann das Ergebnis ist erstaunlich. Die Düse sieht fast aus wie neu. 








In den Bildern zu sehen ist die 1mm Düse. Durch den großen Durchmesser muss die Temeratur der Düse beim Drucken auf 255°C erhöht werden. Das führt dazu, dass Kunststoffreste außen an der Düse verkohlen. Mit einer einfachen Propangas Flamme aus der Lötlampe lassen sich die Kunststoffreste problemlos entfernen. Nebenbei wird die Zange gleich noch mit abgeflammt. Die Technik funktioniert auch hervorragend für den Heizblock, sollte der auch mit verkohltem Kunststoff verdreckt sein. Nach dem Flambieren habe ich die Teile auf dem Abziehstein wieder glatt und glänzend geschliffen und eingebaut. Funktioniert hervorragend.

Freitag, 16. Januar 2015

3D Drucker Update: Drucken von ABS

Mein 3D Drucker ist ein Bausatz von RepRapPro.com und wurde ursprünglich für das Drucken von 1,75mm breitem PLA Kunststoff entwickelt. PLA hat den Vorteil, dass es bei ~200°C flüssig ist und sich somit hervorragend extrudieren lässt. Es haftet auf warmen (65°C) Kapton Klebeband und bei schweren Fällen auf Pritt-Stift. Dabei ist zu beachten, dass die Wärmeausdehnung von PLA sehr gering ist und daher das Risiko, dass sich ein Objekt während dem Druck verzieht gering. PLA ist ein sehr spröder Werkstoff, der allerdings bei geringen Temperaturen weich wird. Für allgemeine Bauelemente, die keiner großen Belastung ausgesetzt sind, oder Dekorationen eignet PLA sich hervorragend, da es einfach und Energiesparend zu verarbeiten ist. Außerdem entstehen bei PLA keine unangenehmen Gerüche.

ABS hingegen ist ein Thermoplast, dessen Schmelzpunkt etwas weiter oben liegt als der des PLA. Ein Druck mit 240°C für das von mir verwendete ABS erzeugt gute Verbindungen der einzelnen Schichten. Allerdings ist die Wärmeausdehnung von ABS gegenüber der von PLA wesentlich höher, sodass es passieren kann, dass das zu druckende Objekt sich bereits zusammenzieht, während eine weitere Schicht aufgetragen wird. Diese zeiht sich dann auch wieder zusammen und so kommt es vor, dass Ecken des Objektes von der Druckplatte abgehoben werden. Dies erzeugt dann einen Spalt, in dem Luft zirkulieren kann und das Objekt weiter abkühlt. Eine komplette Ablösung von der Druckplatte ist dann sehr wahrscheinlich.

Um einem zu schnellen Abkühlen vorzubeugen kann das Objekt auf einer beheizten Oberfläche gedruckt werden. Diese ermöglicht ein langsameres Abkühlen der Schichten und verhindert somit, dass sich das Objekt verzieht. Die Platte sollte dabei etwas mehr als 100°C haben. 
Der Ormerod Drucker von RepRapPro kam mit einem PC Netzteil als Stromquelle für das Heizbett. Mit dem Netzteil war es möglich die Platte unter konstante anliegender Spannung auf 80°C zu erhitzen. Mit einem leistungsstärkeren Netzteil sind 120°C nach einer gewissen Aufwärmzeit problemlos möglich. Der Druck kann also beginnen.

Zu Beginn befindet sich der Druckkopf sehr nahe über der Oberfläche des Druckbetts. Der originale Kopf des Druckers besitzt drei Düsen, die die Luft nahe an der Austrittsstelle der Düse vorbeileitet. Das führt zu einer starken Abkühlung der Druckplatte an dieser Stelle. Nachdem ich den originalen Kühlluftadapter so modifiziert hatte, dass die Luft wahlweise auch zur Seite abgeblasen werden kann, ist auch die Temperatur stabil geblieben.

Reibung der Y-Achse beim Verfahren nach links erzeugt diese Schräge
Der Drucker besitzt keinerlei Seitenwände und so kommt es vor, dass leichte Luftzüge das Druckbild beeinflussen, bzw. zu einem vollständigen Ablösen des Objekts führen. Mit etwas Karton konnte aber schnell Abhilfe geschafft werden. Dabei zeigt sich, wie wichtig es ist, dass das Druckbett frei beweglich bleibt. Andernfalls kann es zu solchen Schönheiten kommen.

Die Kunststoffteile des Druckers sind, wie es sich für einen RepRap gehört, alle mit einem RepRap hergestellt worden. Dabei wurde PLA verwendet und das ist, wie oben angesprochen nicht sehr temperaturfest. Bereits einige Stunden mit ABS haben dem Schlitten der X-Achse stark zugesetzt.

Hohe Temperaturen haben den Kunststoff des Schlittens verformt
Zu testen bleibt jetzt nur noch das transparente ABS. Allerdings muss der Prozess des Druckens vereinfacht werden, da ich nicht immer den kompletten Drucker umbauen möchte, wenn das Material gewechselt werden soll.

Sonntag, 16. November 2014

Back on track... Es druckt wieder

Nach einigen Reparaturarbeiten ist der Drucker wieder unter den Lebenden. Einige Dinge, die ich dabei gelernt habe und die für andere nützlich sein könnten:


Stotternder Schrittmotor

Nachdem ich die Treiber des Duet Controller-Boards getauscht hatte ist der Y-Motor nicht mehr korrekt verfahren. Ich habe das auf die Tatsache geschoben, dass dieser Treiber eventuell nicht richtig verlötet wurde. Also habe ich das Board noch einmal nachgelötet und mit einem ausgebauten Motor getestet. Das Ausbauen des Motors war schnell erledigt und nachdem ich die Lötstellen noch einmal erwärmt hatte hat der Motor sich auch korrekt gedreht. Also alles wieder eingebaut und diesmal die Verkabelung genau überprüft und der Motor stottert immer noch. Nach Erhöhen des Motorstroms und verringern der Beschleunigungswerte ist die Achse auch wieder verfahren. Allerdings ist der Tisch anstatt der 10mm ist der Tisch aber 80mm verfahren. Ein eindeutiges Zeichen, dass mit den Microstep Jumpern etwas nicht stimmt. Wie im Schaltplan des Duet Boards zu erkennen ist, wird jeder Motortreiber auf 1/16 Microstep konfiguriert. Ein kurzes nachmessen des betroffenen Treibers und siehe da, die Konfiguration für MS2 war auf low statt high. Da hat sich beim Tauschen der Treiber wohl eine Leiterbahn gelöst. Ein Draht von Pin 6 auf 3,3V und schon lief wieder alles wie geschmiert.

Stotternder Schrittmotor 2

Ein weiteres Stottern der Y-Achse nach dem erfolgreichen Zusammenbauen und dem ersten Druck ließ sich auf eine lose Steckverbindung des Motors zurück führen. Nicht immer ist das Controller-Board der Verursacher. 

Kabelführung

Die Verschiedenen Kabelstränge des Druckers sind jetzt in einem Bündel mit einem Spiralschlauch zusammen gefasst und somit nicht mehr so gefährdet sich zu verheddern. Der Spiralschlauch ist günstig auf Amazon zu haben.

Luftzug

Der Lüfter für die Hotend-Kühlung kann keinen nennenswerten Druck aufbringen. Da die Luftdüsen des Kühlerteils allerdings nicht dem Durchmesser des Lüfters entsprechen, wir eine große Menge der Luft zur Zuführungsseite zurückgedrückt und weht auf das Druckbett. Das soll angeblich zu schlechteren Drucken führen. Mit einer Abdeckung kann dem entgegengewirkt werden. Ob das wirklich funktioniert, wird sich zeigen.

Stromversorgung

Ich habe das ATX Netzteil durch ein 400W LED Netzteil ausgetauscht. Die Druckplatte ist wesentlich schneller auf Temperatur, die Steigung der Temperaturgerade ist fast doppelt so hoch wie vorher, und der Lüfter des Hotends bekommt beim Einschalten der Heizplatte oder des Hotends kein Drehzahleinbruch mehr. Ich hoffe dass dadurch die Druckergebnisse Konstanter werden, da teilweise der gleiche Druck einmal gelungen ist und beim nächsten Mal wieder nicht.
Die 400W sind allerdings auch viel zu hoch ausgelegt, aber was soll's, es funktioniert.

Hotend Kühlung

Wie bereits oben beschrieben ist die Drehzahl des Lüfters am Hotend ab sofort nicht mehr davon abhängig, ob die Heizplatte oder das Hotend eingeschaltet ist. Wie und ob sich da bei den Druckergebnissen bemerkbar macht bleibt abzuwarten. Besonders interessant werden Brücken, die nun konstant gekühlt werden können. 

Wärmeleitpaste

Ich habe zwischen Heizplatte und Aluminiumabdeckung eine gehörige Portion Wärmeleitpaste verteilt. Das Ergebnis ist , dass die Glasplatte jetzt wesentlich näher am Wert der im Web-Interface eingestellt ist liegt als vorher. Der thermische Verlust zwischen PCB und Aluplatte war durchaus signifikant. Wenn ich im Web-Interface 50°C einstelle hat die Glasplatte nach einiger Zeit auch zwischen 48°C und 49°C erreicht. Erstaunlich.
Den Schalttransistoren im Netzteil habe ich ebenfalls eine Portion Wärmeleitpaste verpasst, denn die waren einfach nur auf einen Alu-Heatsink geschraubt. Der Thermistor im Hotend ist durch diverse Unfälle mittlerweile komplett mit PLA im Heizblock eingegossen. Insofern dient hier das dauernd geschmolzene PLA als 'Wärmeleiter'.

Alles wieder am Laufen

Zukunftspläne

In nächster Zukunft werde ich einen Halter für den Kabelschlauch des Trägerarms machen, denn der führt im Moment dazu, dass sich die Steckverbinder zum Controller-Board bewegen und das ist kein guter Zustand.
Ebenso ist das Kabel zum Heizbett zu lang. das werde ich auch noch kürzen.

Samstag, 8. November 2014

BTW: What's inside a cheap Chinese LED power supply?

I got a cheap 400W 12V switching power supply in the mail the other day. I wanted to use it as replacement for an ATX power supply for my 3D-printer.

But what is inside those things?
400W / 12V Power supply from china

First of all let's have a look at the outside of the power brick. The Frame is made from two 1.5mm aluminium sheets. There is a fan in the top and the screw terminals are covered with a plastic lid. The frame has two screw holes on each side for mounting. It does not have a switch but there is an indicator LED next to the terminal.
The fan on the top cover is connected to a pin header so it can be removed with the lid. The housing itself is pretty sturdy so it looks good so far.

The input voltage can be selected via a switch that is accessible from the outside. You can select a supply voltage of 110V and 220V. So it can be used worldwide since the frequency of the input current does not matter for a switching power supply.


After lifting the cover up we can have a look at the PCB inside. It looks like there is a single sided through hole board inside. Four high power semi-conductors are placed near the side walls and thermally connected to them.One thing I noticed was a loose screw flying around inside the supply. This can be extremely dangerous since it can cause a short in the supply. Also there where two mounting screws missing on the board. One in the middle and one in the upper left corner. 


The underside of the PCB shows the different components of the circuit. The picture below shows the different parts of the power supply. First of all we can see the terminal at the right side and the high voltage AC input at the lower part of the screw terminals. The yellow area is protective earth and surrounds the hot part of the high voltage mains circuit. This is where one of the mounting screws where missing! The mains voltage is decoupled via a transformer and goes from the yellow part into the green area. There it is rectified and buffered in two 680µF caps. Those are rated 250V so I'm not sure what voltage this area has. It certainly can not be rectified mains voltage since this is nearly 400V! The pink area is control circuitry with a central controller KA7500B. It brings everything along to control the switching regulator found at the back side heat-sink. The blue square is the main transformer, that transforms the higher voltage on this side to the desired 12V on the other side. There you can see that the traces on the PCB get flooded with solder to decrease their resistivity. The PCB trace width calculator gives a rough estimation for about 97.9mm trace width. This is certainly not the case so the added solder leads to a reduced trace width. The output of the Terminals is monitored by the chip. So they have to be connected to the 12V output traces. Since the high current leads to a voltage drop over the distance from the transformer to the terminals the measurement of the output voltage should be done at the terminal point. Therefore there should be at least one sens line going back to the controller circuit. Yes, there it is. Marked with the orange arrow.



Oh wow they are high quality Rubycon Caps... Oh wait. no they aren't


So after all I can say you get what you pay for. The power supply is not bad. But it certainly is no high end laboratory style power brick. Let's see how it works out under load.


The output voltage at the terminal droped one volt after loading the power supply with 350W. This can be compensated at the trimmer next to the terminal. so now the output voltage is bang on 12V and the ripple is in an acceptable 0.2Vpp. The supply can now deliver 12V without dropping to 10V like the ATX did. Let's fix up the printer to get going again.

Donnerstag, 6. November 2014

Never assume... Immer einmal mehr überprüfen

Mein Umbauvorhaben, ein leistungsfähigeres Netzteil als das ATX-Netzteil an den Drucker zu bauen ist leider gescheitert. Um die benötigten 20A zum Heizen des Druckbetts an den Drucker zu liefern habe ich mich für den Einsatz einer 3-adrigen 2,5mm² Netzleitung entschieden. Also Braun, Blau und Grün-Gelb. Der Austausch hat vor einigen Tagen stattgefunden und ich habe lediglich die vorgegebene Leitung mit der neuen ersetzt. Dabei habe ich nicht auf die Polarität geachtet, sondern lediglich darauf die gleichen Anschlüsse wieder zu treffen. Tja und genau das habe ich vergessen. Als ich das neue Netzteil anschließen wollte habe ich Blau als 0V und Braun als 12V verwendet, ohne es nochmal auf dem Controllerboard zu überprüfen, denn diese Farbcodierung wird auch im 12V kapazitiven Näherungsschalter verwendet. Die Schaltung zur Generierung der 5V und 3,3V ist mit einer Diode gegen Verpolung gesichert, die Motortreiber hingegen sind in Flammen aufgegangen...

Ersatz ist bestellt und ich kann die Treiberbausteine austauschen. Das ärgerlichste an der Sache ist, dass ich es hätte besser wissen müssen.

Never assume. Double check. Every time. 

Sonntag, 2. November 2014

Zeitraffer Aufnahmen mit dem RaspberryPi und einer PiCam

Es hat etwas faszinierendes dem 3D-Drucker dabei zuzuschauen, wie er Schicht für Schicht ein Teil erstellt. Allerdings ist der Prozess ein zeitintensives Unterfangen. Kleine Drucke sind in einigen Stunden gedruckt, größere Drucke dauern hingegen gerne mal etwas länger. 7 Stunden sind für einen mittelgroßen Druck eine realistische Zeit. Um den Prozess in seiner ganzen Faszination abzubilden können Zeitrafferaufnahmen gemacht werden. Dabei wird die Zeit, die benötigt wird auf ein einstellbares Minimum reduziert und die Entstehung des Objektes in seiner ganzen Pracht gezeigt. Das Hilfsmittel meiner Wahl ist ein RaspberryPi mit PiCam und die Software RPi-Cam-Webinterface. Die Installation der Software ist mit wenigen Eingaben, entweder über die Konsole des Pi's oder über SSH erledigt.

sudo apt-get update
sudo apt-get dist-upgrade
sudo rpi-update
mkdir ~/cam
cd ~/cam
git clone https://github.com/silvanmelchior/RPi_Cam_Web_Interface.git
cd RPi_Cam_Web_Interface
chmod u+x RPi_Cam_Web_Interface_Installer.sh
./RPi_Cam_Web_Interface_Installer.sh install

Jetzt sind alle benötigten Dateien und Programme installiert, sodass mit einem Webbrowser auf die Cam zugegriffen werden kann. Das sehr minimalistische Webinterface ermöglicht eine einfache Konfiguration und die Vorlage für Zeitrafferaufnahmen hat alles für einen schnellen Test bereits eingestellt. Wir wählen also unter 'Load Presets: Stf FOV, x30 timelapse' aus. Ein simpler Druck auf 'record video start' startet die Aufnahme.

RaspberryPi mit PiCam


Nach einiger Zeit hat sich auf Grund der hohen Auflösung der Kamera eine beachtliche Datenmenge angesammelt. Mein aktueller Druck läuft seit 4:30 Stunden und die dazugehörige Filmdatei ist bereits 3,6GB groß. Meine Speicherkarte wird also demnächst überlaufen und die Aufnahme abbrechen. Schade, denn der Druck wird noch einige Stunden laufen.

Eine weitere Möglichkeit ist, die Kamera nur Bildaufnahmen machen zu lassen. Eine Aufnahme mit voller Auflösung und 85% Bildqualität führt zu einer ungefähr 3MB großen Datei. Wenn alle 3 Sekunden ein Foto geschossen wird entsteht innerhalb einer Minute 60MB Daten. Eine Stunden sind dann 3,5GB. Auch hier ist uns nicht weitergeholfen. Um hochwertige Aufnahmen für den Zeitraffer zu bekommen werde ich wohl oder Übel den Speicher des RaspberryPi erweitern.

Sonntag, 26. Oktober 2014

Druckprobleme und -lösungen

Seit meine Rolle weißes PLA von FilamentPrint zu Ende ging habe ich eine 1kg Rolle schwarzes Filament aus China am Drucker hängen. Seit dem hatte ich keine so guten Ergebnisse mehr erzielt. Nach einigen Versuchen habe ich jetzt einige Methoden ermittelt mit denen der Druck dann auch mit dem billigen China PLA zum Erfolg wurde.

PLA darf nicht auf einem zu heißen Druckbett gedruckt werden

Im Gegensatz zu ABS biegt sich PLA auf einem zu heißen Druckbett, was zum Crash mit dem Lüfter führt. Dadurch wird dann der schon gedruckte Körper vom Bett weggerissen. Ein zu kaltes Druckbett führt allerdings zu geringeren Haltekräften auf dem Kaptonband. Daher ist die Einstellung der Temperatur ein klein wenig aufwändig und man muss einige Versuche für verschiedene PLA Rollen durchführen. Aktuell habe ich das Druckbett auf 48°C eingestellt. Was nicht bedeutet, dass das Kapton 48°C heiß wird, denn der Thermistor ist in der Heizplatte lediglich eingeklemmt. Es ist davon auszugehen, dass die Heizplatte etwas wärmer ist. Die Oberfläche der Glasplatte kann allerdings kälter sein. ich habe leider kein Thermometer da um das zu bestätigen.

Langsamer drucken ist für die erste Schichte keine Allgemeinlösung

Die erste Schicht einfach langsamer zu drucken ist für nicht haftende Drucke (zumindest aus PLA) kein allgemein gültiges Heilmittel. Die Zeit, die die Düse auf dem schon aufgebrachten PLA verbringt, führt dazu, dass es zu Biegekräften kommt. Die sind dann ebenfalls für das Hochbiegen von Ecken und Kanten verantwortlich. Eine für mich erfolgreiche Geschwindigkeitsreduzierung ist 50% Druckgeschwindigkeit für die erste Schicht mit innernen Kanten zuerst, dann Äußere Kante und dann Füllung. Die so erzielten Druckergebnisse sind sehr zufrieden stellend.

Z-Achen Refernez und Druckbettausgleich

Der Abstand der Z-Ache zum Druckbett sollte im Bereich von 0,1mm sein. Der Druckkopf darf auf keinen Fall mit Kraft auf das Druckbett drücken, wenn er auf Z=0 gefahren ist. Da das Druckbett des Ormerod Druckers nicht parallel zur X-Achse verläuft ist eine Kompensation notwendig. Diese wird auf Grund des etwas klapprigen Y-Tisches nach jedem Start und beim Referenzieren der Z-Achse ausgeführt. Diese Kompensation führt zwar zu einem erhöhten Betrieb der Z-Achse, führt aber zu wesentlich besseren Druckergebnissen als ohne. 
Schiefes Druckbett des Ormerod Druckers
Die stärkere Belastung der Z-Achse ist nicht schlimm, da in meinem Drucker die M5 Gewindestange gegen eine gut geschmierte Tr10x2 Gewindestange getauscht wurde. So ist es immer wieder schön zuzuschauen, wie die Z-Achse mit verfährt um eine Ebene zu schaffen, die Schräg zur X-Achse liegt.


Samstag, 18. Oktober 2014

Das unendliche Projekt

Warum gibt es 3D Drucker für 2000€ wenn man sich einen ähnlichen schon für 500€ selbst bauen kann?

Diese Frage hat mich in der letzten Zeit beschäftigt. Einerseits sind die offensichtlichen Punkte einen fertig montierten Drucker zu kaufen offensichtlich. Er muss nicht mehr zusammengebaut werden. Andererseits ist das auch eine Aufgabe, die ich persönlich als sehr faszinierend empfinde.

Nach einigen Wochen der regelmäßigen Benutzung meines Ormerod 1 Druckers kann ich allerdings die Kaufentscheidung für einen fertig montierten und in Betrieb genommenen Drucker verstehen. Die meiste Zeit ist mein Drucker nämlich nicht mit drucken beschäftigt. Es ist leider nicht möglich direkt nach dem Einschalten loszudrucken. Die Mechanismen, die den Druckkopf zum Druckbett referenzieren sollen sind leider (noch) nicht in der Lage an verschiedenen Tagen gleiche Ergebnisse zu liefern. Weiterhin muss ich nach jedem beendeten Druck den Drucker resetten und die Z-Achsen Referenzierung durchführen. Somit kann ich den Drucker leider nicht wie erhofft von einem entfernten Rechner mit Daten füttern, die er dann gedruckt hat, wenn ich nach Hause komme. Das ist im Moment das angestrebte Ziel.

Bis es soweit ist sind mir noch einige Dinge Aufgefallen, die eine Verbesserung verlangen:
  • Das Druckbett ist aus 3mm MDF und alles andere als Stabil. Einige Unfälle haben dazu geführt, dass die Ecken deutlich wegsacken. Noch sind sie leicht oberhalb der Y-Achse, wenn sie allerdings weiter absinken, wird das unweigerlich zum Crash am Ende der Achse führen. Hier muss also eine Stabilisierung eingebaut werden.
  • Die M5 Gewindestange der Z-Ache ist mittlerweile eine 10mm Trapezgewindespindel. Das hat zu einem sehr ruhigen Lauf der Z-Achse und wunderschönen Ergebnissen der Schichten geführt. Allerdings passt der Abstand der Achse noch nicht zur Spindel und so neigt sich die Spindel, je tiefer die Z-Achse steht. 
  • Der kapazitive Sensor der Z-Achse hat eine Reproduziergenauigkeit von 4% das sind bei den Einstellungen zur Zeit ca. 0,3mm und somit ausschlaggebend, ob ein Druck gelingt, oder von vornherein zum Scheitern verurteilt ist.
Allerdings hat sich in der letzten Zeit auch einiges Positive entwickelt. Ich habe den Drucker auf Vibrationsdämpfern stehen. Jetzt kann man sich in dem Raum auch wieder unterhalten, wenn der Drucker aktiv ist. Ich habe außerdem eine Rollenhalterung gedruckt, die die Filamentrolle für den Feeder bereit hält. Auch das funktioniert hervorragend.

Mittwoch, 1. Oktober 2014

Anschnallen und festhalten! 3D-Drucker in Hyperspeed

Die neuse Version des Ormerod Firmware Branches ermöglicht die Einstellung eines Geschwindigkeitsmultiplikators. Zusammen mit einem erhöten Motorstrom kann hier an der Druckgeschwindigkeit gedreht werden. Die Motoren des Ormerod sind für 1,4 A ausgelegt und die Treiber können bis zu 2 A treiben. Dabei ist darauf zu achten, dass die Treiber nur passiv ohne zusätzliche Heatsinks außer dem PCB gekühlt werden. Der obere Berecih der Motorströme sollte also möglichst gemieden werden. Ich habe aktuell die Achsenmotoren auf 1 A und den Extruder bei 800 mA gestellt und erreiche damit bei 300% Druckgeschwindigkeit zufriedenstellende Ergebnisse.
Der Geschwindigkeitsmultiplikator beeinflusst jede Geschwindigkeit des Druckers und kann somit von 0% bis ???% den Drucker auch mal an die Grenzen des Möglichen bringen. Die Bewegungen werden linear Skaliert, was für die Beschleunigungswerte ebenfalls eine skalierung bedeutet. Hierdurch werden im System neue Schwingungen eingebracht, die durch die ruckartigen Start- und Stopbewegungen entstehen. Neben dem erhöhten Geräuschpegel führen die Vibrationen auch zu mechanischen beeinträchtigung. Meine Druckbettbefestigung hat sich im hinteren Bereich gelöst, was dazu führte, das das Bett abgesunken und der Druck damit nach zwei Stunden 300% Druckgeschwindigkeit leider doch noch fehlgeschlagen ist.

Lessons learned:
  • Schraubensicherungslack für Schraube-Mutter alle Verbindungen verwenden
  • Vibrationsdämpfer für den Drucker herstellen
  • Druckgeschwindigkeit im G-Code Generator festlegen und nicht manuell alles beschleunigen
  • Z-Achse ist das ausbremsende Element
  • Große Druckaufträge dauern auch mit 300% Geschwindigkeit sehr lange.
Zum Schluss: Verfahrgesräusche bei 300%

Sonntag, 28. September 2014

3D Drucker Augen zu und kapazitiv testen

Im Rahmen einer kleinen Umbauaktion des Druckers habe ich auch den optischen Sensor gegen einen kapazitiven Nährungesschalter getauscht. Das ging nicht so leicht wie erwartet. Der optische Näherungsschalter wird zum Einstellen der X- und Z-Achse verwendet. Diese Konfiguration kann mit einem kapazitiven Sensor nicht durchgeführt werden, da der Sensor wesentlich größer ist als die kleine Platine des optischen Sensors.
Druckkopf mit vorläufig angebrachtem kapazitiven Sensor zur Druckbettbestimmung
Im Hintergrund der Abbildung kann man den neuen Endschalter der X-Achse erkennen. Der wird, wie der Endschalter der Y-Achse am Duet Board an den Pins neben dem Z-Motor. Dabei wird der Schalter wie der Y-Endschalter angeschlossen. Die LED auf dem Duet Board soll nun leuchten, wenn der Endschalter nicht betätigt wird. Die Löcher zur Montage des Tasters sind im X-Achstenträger schon vorhanden und müssen nicht neu angebracht werden.

Der schwierigste Teil ist es den Endtaster jetzt als Quelle für den Nullpunkt zu etablieren. Dazu muss die Firmware geändert werden. Dank 3D-ES gibt es aber ein script, mit dem man sich das git Repository von dc42 herunterladen kann. Dort muss in der Auswahl allerdings der dev tree und nicht der duet tree aus.

   - git clone -b duet ${FW_REPO}/${FIRMWARE} ${FIRMWARE}
   + git clone -b dev ${FW_REPO}/${FIRMWARE} ${FIRMWARE}

Nachdem das Repository heruntergeladen wurde kann mit 

   ./make.sh && ./make.sh install

Der Code kompiliert und installiert werden. Die zu ändernden Werte befinden sich in der Datei "Platform.h" bei Zeile 120

   - #define Z_PROBE_AXES {true, false, true}
   + #define Z_PROBE_AXES {false, false, true}

Damit wird der Firmware gesagt, dass nur noch die Z-Achse mit Hilfe des Z-Sensors genullt werden soll. Alle anderen Achsen haben eigene Endstops.

Bei der Einstellung des Z-Nullpunkts kann wie in der Anleitung beschrieben vorgegangen werden, nur dass man jetzt einen definierten Schaltpunkt hat und daher der Wert keine Rolle spielt. Ich habe mich langsam an den Nullpunkt herangetastet und dann 1,5mm nach oben gefahren. Der Schaltpunkt des Sensors habe ich dann so eingestellt, dass er gerade an diesem Punkt schaltet. Dann den Punkt noch einmal angefahren und der neue Wert für M31 stand fest.

   M31 Z1.66 P600

Wobei der Wert bei P wie oben schon beschrieben relativ egal ist, da der Sensor einen Schaltpunkt hat ab dem er dann von 0V auf einen festen Wert springt. Dieser Wert ist meistens die Betriebsspannung des Sensors. In unserem Fall ist das aber ehr hinderlich, da der Sensor mit 12V betrieben werden muss. Also ein Spannugnsteiler zwischen Signal und Masse, sodass ein ca. 3V starkes Signal am ADC Eingang anliegt. Den Sensor, wie den Taster für die X-Achse, als einfacher Enschalter zu verwenden scheitert, da der Sensor auf Versorgungsspannung schaltet und nicht auf GND, wie es von den Endschaltern getan ist. Hier kann man eventuell noch etwas verbessern.

Alle Änderungen in der Firmware des Ormerod werden in meinem github Repository eingespielt und stehen zur Verwendung zur Vefügung.